首页> 外文OA文献 >Adaptive Neural Control for a Class of Stochastic Nonlinear Systems with Unknown Parameters, Unknown Nonlinear Functions and Stochastic Disturbances
【2h】

Adaptive Neural Control for a Class of Stochastic Nonlinear Systems with Unknown Parameters, Unknown Nonlinear Functions and Stochastic Disturbances

机译:一类随机非线性系统的自适应神经网络控制   未知参数,未知非线性函数和随机扰动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, adaptive neural control (ANC) is investigated for a class ofstrict-feedback nonlinear stochastic systems with unknown parameters, unknownnonlinear functions and stochastic disturbances. The new controller of adaptiveneural network with state feedback is presented by using a universalapproximation of radial basis function neural network and backstepping. Anadaptive neural network state-feedback controller is designed by constructing asuitable Lyapunov function. Adaptive bounding design technique is used to dealwith the unknown nonlinear functions and unknown parameters. It is shown that,the global asymptotically stable in probability can be achieved for theclosed-loop system. The simulation results are presented to demonstrate theeffectiveness of the proposed control strategy in the presence of unknownparameters, unknown nonlinear functions and stochastic disturbances.
机译:针对一类具有未知参数,未知非线性函数和随机干扰的严格反馈非线性随机系统,研究了自适应神经控制(ANC)。利用径向基函数神经网络的通用逼近和反推,提出了一种具有状态反馈的自适应神经网络控制器。通过构造合适的李雅普诺夫函数设计自适应神经网络状态反馈控制器。自适应边界设计技术用于处理未知的非线性函数和未知的参数。结果表明,闭环系统可以实现全局渐近稳定的概率。仿真结果表明了所提出的控制策略在未知参数,非线性函数和随机干扰存在下的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号